

Water and Energy: Beyond the Nexus

QUANTIFYING THE TRADEOFFS OF THE WATER-ENERGY NEXUS

Diego J. Rodriguez, Senior Economist

World Water Week 2013, Stockholm

Why is this issue important?

Outline

- Water Risks for the Energy Sector
- Water Needs of the Energy Sector
- Quantifying the Tradeoffs of the Water and Energy Nexus – a World Bank Initiative
- South Africa as a First Case Study

WATER RISKS OF THE ENERGY SECTOR

Rapid growth in energy demand in developing countries will drive a doubling of water demand for energy by 2035

Non-OECD primary energy demand by region in the New Policies Scenario *

- Africa's electricity generation will be 7 times as high as nowadays by 2050
- Asia's primary energy production will almost **double**, and electricity generation will more than triple by 2050
- In Latin America, the amount of electricity generated is expected to increase fivefold in the next 40 years and the amount of water needed will triple

SOURCES: * WORLD ENERGY OUTLOOK. EIA, 2012

The energy-water nexus is already present and very real problem

Says

Impacts in the Energy Sector in the US

The US Department of Energy recently issued a report looking at water impacts on their energy sector

SOURCE: U.S. DEPARTMENT OF ENERGY

The Energy sector is starting to recognize the magnitude of the issue

The **first time** that the IEA World Energy Outlook report has included a special section on the water needs and the possible future water constraints of the energy sector.

* Word cloud (count) infographic of the IEA report

Energy Sector is vulnerable to Water Issues

INCREASED WATER TEMPERATURE FOR COOLING – for thermal power plants

DECREASE IN WATER AVAILABILITY – for hydro, thermal power plants, fuel extraction and processing

WASHINGTON POST

* Besides floods and other extreme events

MAIN WATER

RISKS*

WORLDWATCH.ORG

Pressure on water resources is growing: Key drivers include more people, growing economies, and climate change

Hot Spots – where "low flows" and "water temperature increase" meet

SOURCE: VULNERABILITY OF US AND EUROPEAN ELECTRICITY SUPPLY TO CLIMATE CHANGE. MICHELLE T. H. VAN VLIET1, JOHN R. YEARSLEY2, FULCO LUDWIG1, STEFAN VÖGELE3, DENNIS P. LETTENMAIER2 AND PAVEL KABAT

Slide 11

So the challenge is how do we plan and how do we design our investments

The baselines water stress is defined as the ratio of total annual freshwater withdrawals for the year 2000, relative to expected annual renewable freshwater supply based on 1950–1990 climatic norms.

SOURCE: WORLD RESOURCES INSTITUTE

But we must acknowledge the complexities of the energy sector

WATER NEEDS OF THE ENERGY SECTOR

Almost all forms of electricity generation require water

HYDROPOWER

\star

Only Wind and Solar PV have a negligible impact on water resources

THERMAL POWER PLANTS

CSP (Tower)

Water is required mainly for cooling purposes

NGCC

CSP (Parabolic Trough)

Thermoelectric power plants account for **40%** of the freshwater withdrawn every year in the US and for **43%** in Europe*.

* SOURCE: VULNERABILITY OF US AND EUROPEAN ELECTRICITY SUPPLY TO CLIMATE CHANGE. MICHELLE T. H. VAN VLIET1, JOHN R. YEARSLEY2, FULCO LUDWIG1, STEFAN VÖGELE3, DENNIS P. LETTENMAIER2 AND PAVEL KABAT

Slide 16

Water is also needed to extract and process fuels

- Water consumption for fuels such as oil, coal or gas can seem minor compared to other sectors, however, its development can be very water intensive locally and temporally.
- Biofuels is the single largest renewable energy source in use today, and will increase in the future, increasing also water consumption

Share of Bioenergy in World Primary Energy Mix; IEA report, "Bioenergy– A sustainable and reliable energy source" (2009)

Moreover...water quality can be an issue if not regulated/managed properly

Thermal Pollution

Drainage from Abandoned coal mines

Fracking waste water

Slide 17

QUANTIFYING THE TRADEOFFS OF THE WATER-ENERGY NEXUS A WORLD BANK INITIATIVE

The World Bank Initiative

Objective: The main objective of the initiative is to contribute to a sustainable management and development of the water and energy sectors by incrasing awareness and capacity on *integrated planning* of energy and water investments identifying and evaluating trade-offs and synergies between water and energy planning.

Rapid assessments in priority basins/countries

Implementation of case studies using existing tools when possible

Knowledge dissemination, advocacy and capacity building

Methodological Approach 1/2

- Entry point is Energy Sector: we acknowledge that it is very difficult to change energy planning from water organizations
- Engagement with relevant stakeholders from day 1, involving local partners from energy and water sectors work to identify and assess possible case studies based on their current energy and water sector situation and trends and constraints.
- Flexible modeling framework to facilitate tailored analyses over different geographical regions and challenges
- Build on existing country knowledge and modeling tools whenever possible to ensure continuity and sustainability of initiative and lower costs Client ownership and capacity building are crucial to ensure the success of the initiative.
- Robust treatment of risk and uncertainty
- Incorporate the long-term effects of climate change

Methodological Approach 2/2

- Economic tools to assess the tradeoffs between competing sectors and to provide policy recommendations to mitigate potential effects
- Case studies or pilots to illustrate different types of situations in that are most relevant for client countries
 - Water scarce country
 - Country with abundant water but with seasonal variability tropical
 - Country with in-house capacity and good data
 - Country with lack of data (small-poor)
- Forming stronger alliances is also priority of this initiative. The challenge presented by the nexus is too large for any country, region, development finance institution or implementing agency to tackle alone.
- It will also collaborate with partners to leverage efforts of other countries, the international community, and partners in the nonprofit and private sectors for more success in moving the nexus agenda forward both at the global policy level and at the country level.

Methodological approach: Building on existing energy tools – start small

- Application on regional or country level for longterm energy planning
- Improved integration of water dynamics and economy of water

Improved LEAP optimization

MARKAL /

LEAP - WEAP

TIMES

- Application of LEAP-WEAP on country or national river basin level for joint energy and water master planning
- Improved integration of economics for water

SOUTH AFRICA AS A CASE STUDY

South Africa: the case of A Water Scarce Country

Total Installed capacity in 2010 44,200 MW

- Thermal Coal
 Gas / Diesel OCGT
- Nuclear
- Hydro
- Wind
- Pumped Storage

Water scarce country with very stressed basins in terms of water allocation

Coal Thermal Power plants account for almost 90% of the power capacity installed

Competition for water across sectors will increase – Power plants have priority, which could negatively affect other sectors such as agriculture

Fracking for Shale Gas is being explored, which will put additional pressure on water resources

Need for Water and Energy Integrated planning to achieve a sustainable future and avoid water scarcity problems in the next years

Sources - Top: CSIR, Bottom: ESKOM and Department of Energy of South Africa

Using what already exist and is currently used : Improvement of <u>existing</u> TIMES model

South Africa TIMES (SATIM) used by the Energy Research Center:

- Partial equilibrium linear optimization model capable of representing the whole energy system, including its economic costs and its emissions
- Five demand sectors industry, agriculture, residential commercial and transport - and two supply sectors - electricity and liquid fuels
- The model is capable of solving for a variety of constraints

PHASE 1 of CASE STUDY:

- 1. Develop marginal water supply cost schedules
- 2. Develop the "water smart" SATIM
- 3. Energy-Water Model Simulations : run different scenarios to assess how energy sector development strategies change relative to the reference scenario depending if water is constraint, if water has a price, etc.

Overview of SATIM

Slide 26

Example: the Power Sector

SATIM PARAMETERISATION OF POWER PLANT TECHNOLOGIES

	PARAMETERS	ADDITIONAL PARAMETERS FOR CHP PLANTS	AD	DITIONAL PARAMETERS FOR NEW PLANT TECHNOLOGIES	
	Energy input commodity or fuel	Industrial process heat	Limits on capacity Investment cost		
	Water consumption ¹	Operation in back pressure			
	Efficiency	Additional input fuel	Те	Technology life	
	Output commodity			hnology lead-time	
	Energy availability	but as of now there is no constraint on it, the model assumes that it is an infinite resource and with no price o regional constraint	e I r	er bound on new capacity	
	Capacity availability			er bound on capacity factor	
	Capacity credit			nds on wind classes	
	Fixed operating and maintenance cost			l intermittency	
	Variable operating and maintenance cost		Ca	pacity credit of wind	
	Refurbishment/retirement profile		Di wi	urnal production of solar with and thout storage by timeslice	
	"Season" & "Daynite" operating categories				

Links to CGE model (E-SAGE)

E-SAGE: Energy---extended South African General Equilibrium model

PHASE 2 of CASE STUDY:

- Run the CGE model to establish reference scenario demand projections for energy.
- Run SATIM with these given demand projections to produce a new Reference case, and then run a new EW-Nexus case that allows for reduced energy demands from economy-wide adjustments when energy prices rise to reflect water scarcity.
- Pass SATIM findings on increased energy production costs back into the CGE model in order to evaluate the economy-wide impact of accounting for water scarcity in energy sector development.
- Compare these reference and EW-Nexus scenarios.
- Compare the incremental water supply costs for energy expansion across the different water management areas in the model to other figures for water shadow prices by water management area. Using such comparisons, highlight where increased demands on water sources from energy sector expansion may particularly pose challenges to efficient water management across sectors and water management areas.

E-SAGE Model

Economywide framework

First publication:

"Thirsty Energy"

is available at the World Bank Booth and online at: www.worldbank.org/water

It introduces the energy-water nexus, examines the water requirements of power generation and outlines some potential technical and institutional solutions for improving the management of the nexus.

THANK YOU

Questions?

To know more:

www.worldbank.org/water blogs.worldbank.org/water

@wspworldbank

Contact: Diego J. Rodriguez, Senior Economist. drodriguez1@worldbank.org Anna Delgado Martin, Technical Specialist. adelgado@worldbank.org